This book provides readers with a practical guide to the principles of hybrid approaches to natural language processing (NLP) involving a combination of neural methods and knowledge graphs. To this end, it first introduces the main building blocks and then describes how they can be integrated to support the effective implementation of real-world NLP applications. To illustrate the ideas described, the book also includes a comprehensive set of experiments and exercises involving different algorithms over a selection of ...
Read More
This book provides readers with a practical guide to the principles of hybrid approaches to natural language processing (NLP) involving a combination of neural methods and knowledge graphs. To this end, it first introduces the main building blocks and then describes how they can be integrated to support the effective implementation of real-world NLP applications. To illustrate the ideas described, the book also includes a comprehensive set of experiments and exercises involving different algorithms over a selection of domains and corpora in various NLP tasks. Throughout, the authors show how to leverage complementary representations stemming from the analysis of unstructured text corpora as well as the entities and relations described explicitly in a knowledge graph, how to integrate such representations, and how to use the resulting features to effectively solve NLP tasks in a range of domains. In addition, the book offers access to executable code with examples, exercises and real-world applications in key domains, like disinformation analysis and machine reading comprehension of scientific literature. All the examples and exercises proposed in the book are available as executable Jupyter notebooks in a GitHub repository. They are all ready to be run on Google Colaboratory or, if preferred, in a local environment. A valuable resource for anyone interested in the interplay between neural and knowledge-based approaches to NLP, this book is a useful guide for readers with a background in structured knowledge representations as well as those whose main approach to AI is fundamentally based on logic. Further, it will appeal to those whose main background is in the areas of machine and deep learning who are looking for ways to leverage structured knowledge bases to optimize results along the NLP downstream.
Read Less
Add this copy of A Practical Guide to Hybrid Natural Language Processing to cart. $176.87, new condition, Sold by Ria Christie Books rated 4.0 out of 5 stars, ships from Uxbridge, MIDDLESEX, UNITED KINGDOM, published 2020 by Springer.
Add this copy of A Practical Guide to Hybrid Natural Language Processing to cart. $86.94, very good condition, Sold by Academic Book Solutions rated 5.0 out of 5 stars, ships from Medford, NY, UNITED STATES, published 2020 by Springer.
Add this copy of A Practical Guide to Hybrid Natural Language Processing to cart. $99.52, good condition, Sold by HPB-Red rated 5.0 out of 5 stars, ships from Dallas, TX, UNITED STATES, published 2020 by Springer.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Add this copy of A Practical Guide to Hybrid Natural Language Processing to cart. $178.08, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 2021 by Springer.