Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments. Data analysis techniques are required for identifying causal information and relationships directly from such observational data. This need has led to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. A practicing analyst can explore the literature to find many ...
Read More
Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments. Data analysis techniques are required for identifying causal information and relationships directly from such observational data. This need has led to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in time series data sets. Exploratory causal analysis (ECA) provides a framework for exploring potential causal structures in time series data sets and is characterized by a myopic goal to determine which data series from a given set of series might be seen as the primary driver. In this work, ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreements between different time series causality tools during ECA might provide deeper insight into the data than could be found otherwise.
Read Less
Add this copy of Exploratory Causal Analysis with Time Series Data to cart. $53.95, new condition, Sold by GreatBookPrices rated 4.0 out of 5 stars, ships from Columbia, MD, UNITED STATES, published 2016 by Springer.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Trade paperback (US). Glued binding. 133 p. Contains: Unspecified. Synthesis Lectures on Data Mining and Knowledge Discovery. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.
Add this copy of Exploratory Causal Analysis with Time Series Data to cart. $55.96, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 2016 by Springer.