A basic principle governing the boundary behaviour of holomorphic func- tions (and harmonic functions) is this: Under certain growth conditions, for almost every point in the boundary of the domain, these functions ad- mit a boundary limit, if we approach the bounda-ry point within certain approach regions. For example, for bounded harmonic functions in the open unit disc, the natural approach regions are nontangential triangles with one vertex in the boundary point, and entirely contained in the disc [Fat06]. In fact, ...
Read More
A basic principle governing the boundary behaviour of holomorphic func- tions (and harmonic functions) is this: Under certain growth conditions, for almost every point in the boundary of the domain, these functions ad- mit a boundary limit, if we approach the bounda-ry point within certain approach regions. For example, for bounded harmonic functions in the open unit disc, the natural approach regions are nontangential triangles with one vertex in the boundary point, and entirely contained in the disc [Fat06]. In fact, these natural approach regions are optimal, in the sense that convergence will fail if we approach the boundary inside larger regions, having a higher order of contact with the boundary. The first theorem of this sort is due to J. E. Littlewood [Lit27], who proved that if we replace a nontangential region with the rotates of any fixed tangential curve, then convergence fails. In 1984, A. Nagel and E. M. Stein proved that in Euclidean half- spaces (and the unit disc) there are in effect regions of convergence that are not nontangential: These larger approach regions contain tangential sequences (as opposed to tangential curves). The phenomenon discovered by Nagel and Stein indicates that the boundary behaviour of ho)omor- phic functions (and harmonic functions), in theorems of Fatou type, is regulated by a second principle, which predicts the existence of regions of convergence that are sequentially larger than the natural ones.
Read Less
Add this copy of Fatou Type Theorems: Maximal Functions and Approach to cart. $60.65, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 2012 by Birkhauser.
Add this copy of Fatou Type Theorems: Maximal Functions and Approach to cart. $82.21, good condition, Sold by Orca Knowledge Systems, Inc rated 5.0 out of 5 stars, ships from Novato, CA, UNITED STATES, published 1997 by Birkhäuser.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Good. No DJ. Ex University of California, Berkeley Math/Stat Library book with usual library markings. Binding is tight, text clean. No other marks in very lightly read book.
Add this copy of Fatou Type Theorems: Maximal Functions and Approach to cart. $87.09, good condition, Sold by Bonita rated 4.0 out of 5 stars, ships from Santa Clarita, CA, UNITED STATES, published 2012 by Birkhäuser.
Add this copy of Fatou Type Theorems: Maximal Functions and Approach to cart. $125.98, good condition, Sold by Bonita rated 4.0 out of 5 stars, ships from Santa Clarita, CA, UNITED STATES, published 1997 by Springer Verlag.