In the last decades, machine learning techniques - especially techniques of deep learning - led to numerous successes in many application areas, including economics. The use of machine learning in economics is the main focus of this book; however, the book also describes the use of more traditional econometric techniques. Applications include practically all major sectors of economics: agriculture, health (including the impact of Covid-19), manufacturing, trade, transportation, etc. Several papers analyze the effect of age, ...
Read More
In the last decades, machine learning techniques - especially techniques of deep learning - led to numerous successes in many application areas, including economics. The use of machine learning in economics is the main focus of this book; however, the book also describes the use of more traditional econometric techniques. Applications include practically all major sectors of economics: agriculture, health (including the impact of Covid-19), manufacturing, trade, transportation, etc. Several papers analyze the effect of age, education, and gender on economy - and, more generally, issues of fairness and discrimination. We hope that this volume will: help practitioners to become better knowledgeable of the state-of-the-art econometric techniques, especially techniques of machine learning, and help researchers to further develop these important research directions. We want to thank all the authors for their contributions and all anonymous referees for their thorough analysis and helpful comments.
Read Less
Add this copy of Machine Learning for Econometrics and Related Topics to cart. $272.02, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 2024 by Springer International Publishing AG.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Contains: Illustrations, black & white, Illustrations, color. Studies in Systems, Decision and Control . IX, 499 p. 100 illus., 87 illus. in color. Intended for professional and scholarly audience.