Statistical mechanics is hugely successful when applied to physical systems at thermodynamic equilibrium; however, most natural phenomena occur in nonequilibrium conditions and more sophisticated techniques are required to address this increased complexity. This second edition presents a comprehensive overview of nonequilibrium statistical physics, covering essential topics such as Langevin equations, L???vy processes, fluctuation relations, transport theory, directed percolation, kinetic roughening, and pattern formation. ...
Read More
Statistical mechanics is hugely successful when applied to physical systems at thermodynamic equilibrium; however, most natural phenomena occur in nonequilibrium conditions and more sophisticated techniques are required to address this increased complexity. This second edition presents a comprehensive overview of nonequilibrium statistical physics, covering essential topics such as Langevin equations, L???vy processes, fluctuation relations, transport theory, directed percolation, kinetic roughening, and pattern formation. The first part of the book introduces the underlying theory of nonequilibrium physics, the second part develops key aspects of nonequilibrium phase transitions, and the final part covers modern applications. A pedagogical approach has been adopted for the benefit of graduate students and instructors, with clear language and detailed figures used to explain the relevant models and experimental results. With the inclusion of original material and organizational changes throughout the book, this updated edition will be an essential guide for graduate students and researchers in nonequilibrium thermodynamics.
Read Less